2024-10-29
Note
Bueno de Mesquita & Fowler - Thinking Clearly with Data - Chapter 2
\[ \mu(X) = \frac{\sum^N_i{X_i}}{N} \]
\[ \sigma^{2}_{X} = \frac{\sum^{N}_{i}{(X_i - \mu_{X})^2}}{N} \]
\[ \sigma_X = \sqrt{\sigma^{2}_{X}} = \sqrt{\frac{\sum^{N}_{i}{(X_i - \mu_{X})^2}}{N}} \]
Note
Bueno de Mesquita & Fowler - Thinking Clearly with Data - Chapter 4
\[ cov(X,Y) = \frac{\sum^{N}_{i=1}(X_i - \mu_X) \cdot (Y_i - \mu_Y)}{N} \]
\[ corr(X,Y) = \frac{cov(X, Y)}{\sigma_X \cdot \sigma_Y} \]
\[ r^2 = corr(X,Y)^2 = \left(\frac{cov(X, Y)}{\sigma_X \cdot \sigma_Y}\right)^2 \]
GV249 AT4 | 📨 email l.m.metson@lse.ac.uk 🤔 Question? 🙋 raise your hand or 🖥️ use the Moodle Forum.